
 Page 1 of 7

Extending Catamount for Multi-Core Processors

John Van Dyke, Courtenay Vaughan, Suzanne Kelly
Sandia National Laboratories

Scalable Computing Systems Department
PO Box 5800, MS 1319

Albuquerque, NM 87185-1319
jpvandy@sandia.gov, ctvaugh@sandia.gov, smkelly@sandia.gov

ABSTRACT
The XT3 Catamount Virtual Node (CVN)
implementation was based on the dual processor
support in ASCI Red’s [1] Cougar Light Weight
Kernel Operating System. That solution was
limited to no more than 2 virtual nodes per
physical node. This paper describes the design
for extending Catamount to support more CPUs
per node. It identifies the areas needing
modification and the selected resolution. Some
preliminary performance results are provided.

Keywords
Operating Systems, MPP, Light Weight Kernel,
Multi-Core, XT3, XT4, Catamount.

1.0 Introduction

We begin with a brief description of the
Catamount Light Weight Kernel Operating
System. A fuller description can be found in [2].
Emphasis is placed on areas needing
modification for multiple CPU cores. Section 3
describes the requirements for a multiple core
solution and we provide the design and
implementation in Section 4. While the
development is still underway, some early dual-
core performance results are available and we
present these in Section 5.

2.0 Description of Catamount

Catamount assumes a functionally partitioned
MPP [3]. That is, Catamount runs on processors
intended for intense computation and relies on

 * Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin
Company for the United States Department of
Energy’s National Nuclear Security
Administration under contract DE-AC04-
94AL85000.

other processors within the MPP to perform
additional services. These service processors run
Linux and provide the interactive development
environment, file I/O, and high speed access to
external services. Figure 1 depicts the functional
partitions.

Figure 1: Functional Partitions of MPP using
Catamount

High
Speed

External
Network

High
Speed

External
Network

Service
Processors
(Linux)

Compute
Processors
(Catamount)

I/O processors (Linux)

Network I/O
Processors (Linux)

Continue to refer to Figure 1 as we discuss the
usage model for Catamount. A user logs into a
Linux service processor and performs typical
application execution set-up, such as compilation
and creation of the problem dataset. The user
then requests that the application be run on some
number of compute nodes. The user also
specifies how many process instances to run on
each node, where the number of processes
cannot exceed the number of cores. For the
current CVN implementation, the maximum is
two processes. The user-invoked “yod” program,
executing on a service processor, launches the
application on the assigned compute nodes. Once
started, the application runs under Catamount’s
control. The application instances on each
compute processor pass messages to
communicate with each other over the tightly
coupled network. File I/O flows between the
compute processors and the I/O processors.
When the application completes, the user can
review the results on the service processors

 Page 2 of 7

and/or direct that the files be sent to external
services for post processing or archival storage.

The Catamount operating system consists of a
Quintessential Kernel (QK) and a Process
Control Thread (PCT). The PCT and the QK
work together to provide the functionality
required to run a scientific calculation. The PCT
will decide what physical CPU core, and what
physical memory a new process is to have.

CVN allows the application to use twice as many
nodes with no change to the application
executable. Note, however that the number of
processors is the only resource that has been
doubled. The node memory is split between the
two processes and the two processes share
network access. It should not be thought of as an
SMP since the two processes on a node do not
share memory.

At the behest of the PCT, the QK will set up the
virtual addressing structures for the new process
that are required by the hardware. The PCT will
decide which processes are ready to run on their
respective cores and at the behest of the PCT, the
QK will flush caches, set up the hardware
registers, and run the process(es). The basic
structure of these components is shown below:

Figure 2: Compute Processor Components

Quintessential Kernel

Application Process
(up to 4; typically 1 for single
cores and 2 for dual cores)

Process
Control
Thread

While Figure 2 provides a useful logical view of
the components, the physical layout is quite
different and is shown in Figure 3.

Figure 3: Catamount Physical Memory Layout
(not to scale)

QK
text

Network
buffer

(qk heap)

Portals
memory

PCT
text

PCT
data

User
program
text &
data

User
heap

S
t
a
c
k

QK
data

S
t
a
c
k

S
t
a
c
k

P
e P
r C
s T
i
s h
t e
e a
n p
t

PCT heap

Up to 4
instances

When the QK installs the PCT, the remainder of
physical memory is included in the PCT’s heap.
When the PCT loads an application, it utilizes
the bulk of its heap space for the application’s
memory. It divides this space equally for each
CVN process running on the node.

While Catamount utilizes virtual addressing,
there is no virtual memory support. This is an
important performance, reliability and scalability
feature of Catamount. Disks needed to
implement virtual memory are very slow in
comparison to memory access, have a low mean
time to failure, and impede the predictable
progress of the application.

Another feature of Catamount’s memory
management is default support for 2 MB pages.
For many applications, larger pages can
significantly reduce cache misses and TLB
flushes as they cover a larger percentage of
memory. Smaller, 4K pages are supported as
well for applications that require more random
access of memory. The user enables small pages
with a command line option when starting the
parallel application.

The decision whether to run on the second core
in virtual node mode is made at run time. The
default can be overridden with a yod command
line option. With –SN, only one core is used.
With –VN, both cores are used. If an application
requires more than one half of the physical
memory on a node to do its share of the
computation, VN mode cannot be used. There is
no virtual memory to extend the address space.
Another memory-related consideration is
contention. The processors each have their own
cache, but the memory bus is shared. The
frequency of cache misses will have an impact
on how effectively the second processor can be
utilized, as they compete for memory bandwidth.

Similarly, the two processes on the same node
must share the Network Interface Chip (NIC). A
simple locking mechanism allows each process
to safely send their messages independently.
(This is an enhancement since the description
given in [2].) In order to determine process
destination, only one processor will receive all
incoming messages. These contention issues can
impact the effectiveness of CVN.

 Page 3 of 7

Figure 4: Dual Core CPU responsibility
assignment

Several papers have documented the
effectiveness of dual cores, in particular on
Catamount and Linux. They can be found in
references [4] thru [9].

Given this background on Catamount and its
dual-core implementation, we turn now to the
requirements for a multi-core version, called, N-
way Catamount.

3.0 Requirements and Restrictions

The immediate goal is to create an enhanced N-
way Catamount to support 4 processors per node,
suitable to run on an XT4 populated with quad-
core AMD Opterons (Barcelona). In so far as
reasonable, the implementation should be N-way
rather than 4-way and will be able to run on
single core or dual core processors without
recompilation.

3.1 Regression-less Functionality and
Performance

As is typical of most enhancement efforts,
regressions are not acceptable. Existing
functionality shall be maintained. Likewise, the
existing performance characteristics of the
applications shall be retained. Performance
improvements, of course, are acceptable.

MPI and shared memory (shmem) applications
will be supported. Catamount will continue to
interface to other system components, such as
the Lustre File System, the Compute Processors
Allocator, the batch scheduler, and the RAS
system.

There was one identified exception to the no-
regression requirement. The undocumented
“share mode” feature in CVN will no longer be

functional. Share mode allowed a node to
simultaneously run up to four independent user
processes. Share mode was available in versions
of the light weight kernel prior to Catamount. It
never proved useful, complicated the load
protocol, and hindered independent progress of
an application.

Heterogeneous mode, like share mode is a rarely
used feature. The “-F <filename>” option of the
yod command allows up to 32 different binaries
to be loaded onto independent subsets of nodes
in a single job. This functionality shall be
preserved with N-way Catamount. As with the
CVN implementation, the number of processes
per node shall be the same for each subset of
nodes. The same binary shall run on each
process on the node. Only the last specified
binary can request a virtual node count that is not
a multiple of the number of processes per node.

3.2 Networking

Enhancements to the original CVN
implementation allow each processor to access
the NIC directly when sending messages. This
feature shall be retained for N-way. It ensures the
more independent progress of the process on
each core.

The CVN implementation only supports NIC-
sharing on messages being sent. All received
messages are initially processed by the QK on
the first CPU, who parses the message to
determine the ultimate CPU destination. This
limitation is due to host-side protocol processing.
N-way Catamount will support NIC-side
processing of the protocol.[10] This will allow
messages to be sent to the target CPU/process
immediately upon message receipt.

3.3 Processes per node (ppn)

The current yod options of SN or VN do not lend
themselves to expansion to 4 (or more) virtual
nodes per node. The current N-way plan is a
relatively major API change. The yod command
line specification of –SN and –VN will no longer
be supported. The yod –sz (or –size or –np)
option will now refer to the number of physical
nodes to be allocated. With this change, the
value in the –sz option will match the number
specified on a qsub command. The number of
virtual nodes per physical node will be specified
with a new option, -ppn, which stands for
processes per node. To allow an application to

 Page 4 of 7

run on a number of virtual nodes that is not a
multiple of the processes per node, a –total-
virtual-nodes option is introduced. In UNIX-
style notation, the command line format will be:

yod –sz/size/np=#nodes [[-ppn=procs_per_node]
 -total-virtual-nodes=#vn] …

Should the yod command not include a ppn
specification, the file /etc/xt.conf will be
consulted for the site default. If none, one will be
used.

3.4 Scalability

The OS shall be scalable to at least 100,000
nodes. There should be no limit on the number of
virtual nodes except the 2**31 limit on the
signed integer value.

Memory usage by the OS itself shall be
minimized and not scale with the size of the
machine.

3.5 Other Requirement Considerations

The initial version of N-way Catamount will not
support applications using OpenMP. Some
consideration was given to re-introducing
OpenMP-style support in Catamount. Prior light
weight kernel versions of Catamount did support
a simple threaded model. It was removed from
Catamount since it was rarely used and had
atrophied through the years.

N-way Catamount will retain three design
choices made in CVN. After initial job start up,
a process is permanently bound to a particular
processor. The heap is divided equally among
virtual nodes. There is no shared memory
between application processes on a node. (The
shmem library is supported for sharing memory
access between any virtual nodes in a job.)

4.0 Design of Required Changes

While these changes are currently being made in
the code, presently the only testing is single and
dual core to verify no regressions.

4.1 Limit Memory Requirements

The requirement for OS memory to not grow
with the number of nodes, is not met by CVN.

The PCT has a number of static arrays that are
dimensioned by the maximum number of virtual
nodes. These are used during the job load
process and can be eliminated by borrowing
space that the application will ultimately use.
The PCT’s use of malloc after initialization is
very restricted since the PCT’s heap is used for
application memory. Hence, fragmenting the
PCT’s heap would impact the maximum memory
available for the application. The current N-way
implementation uses a shared read-only memory
region for the application that contains the
application’s node map and a single executable
text section. This space is allocated early in job
load and the text portion is used for the various
temporary tables the PCT requires to load the
job.

4.2 Change “2” to “N”

Conceptually the changes to go from two-way to
N-way are quite simple. In CVN there are many
places were there are separate paths for handling
the two processes or processors. The processing
for other than cpu-0 needs to become a loop over
processors. In some cases, it can be combined to
a loop over all processors. There were a few
places where a loop over “N” was not possible.
The logic for each individual node is unique. C
preprocessor commands flag these places when
“N” is changed to a value greater than 4.

Certain OS structures need expansion to support
the increased number of processors. For
example, the “other processor” field in the
Process Control Block, will be dimensioned and
references will be converted to loops, as
appropriate.

4.3 PCT – QK Interface

There are generalizations to the interface
between the PCT and the QK for virtual node
initiation and subsequent job scheduling. Rather
than looping over calls into the QK, it is more
efficient to modify the QK’s API to specify the
number of times a request shall be executed.

4.4 Process Migration

In CVN, the two processes on a node both start
on cpu-0 and the second is “migrated” to cpu-1
by an application system call from the start up
library and then the application notifies the PCT.
The N-way migration process is made more
robust by making the only application system

 Page 5 of 7

calls for this go through the PCT and allow the
PCT to make a single call into the QK to migrate
the list of processes.

4.5 QK Multi-CPU Code

There are several places in the CVN QK where
there are separate entries or paths for the cpus.
These need to be replicated or generalized. The
current N-way implementation does some of
each. Where there is hard-coded replication, it
is, at present, 4-way. The behind the scenes
handling to provide the software with cpu-id
information needed slight generalization.

4.6 Portal Process Identifier

The file system software cared about not reusing
Portals identifiers too rapidly so a rolling bias
was added to the compute nodes Portals PID.

4.7 Portals Networking Software

During the development of the Red Storm
system, two versions of the Portals protocol were
conceived. One version would run on the host,
while the second version would run on the NIC.
(These are sometimes referred to a “generic” and
“accelerated” Portals.) The second version has
never been fully developed and integrated into
CVN. It will be introduced, tested, and integrated
into N-way. Using the NIC to process the
protocol becomes more important as the number
of cores being supported by one NIC grows.

5.0 Performance Metrics

In order to validate the design requirements of no
regressions going from CVN to N-way in either
performance or functionality, we have tested on
a variety of systems. The largest test to date was
run on the mixed XT3/XT4 system at NCCS at
Oak Ridge. For that test, we ran two application
codes at sizes up to the full machine. The codes
were CTH, a shock hydrodynamics code, and
PARTISN, a neutron transport code. The
performance results from these codes run in VN
mode on problems which were scaled with the
number of processors are shown in figures 5 and
6. For both of these figures, better performance
is indicated by lower values.

Figure 5: CTH VN performance

CTH - shaped charge - 80x192x80/soc

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of cores

Ti
m

e
pe

r T
im

es
te

p

CVN
N-way

Figure 6: PARTISN VN performance

Partisn - SNtiming - 48^3/socket

200

250

300

350

400

450

500

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of cores

N
or

m
al

iz
ed

 G
rin

d
Ti

m
e Transport - CVN

Diffusion - CVN
Transport - N-way
Diffusion - N-way

During this test, we first ran the tests with the
machine running the CVN system and then ran
the same tests in the same order with the N-way
system. In the case of CTH, each of the tests
gave the same answers on both operating
systems. The difference in performance was
between 0.06% faster for N-way and 0.21%
faster for CVN, with most tests indicating less
than 0.05% difference. This amount of
difference is consistent with run to run variation.
We also ran CTH in SN mode on 11500 nodes of
the machine and saw that CVN was 1.2% faster
than N-way. This is more than would have been
expected. The other thing that can be noted
about the CTH results is the dips in the scaling
results for 32, 512, 1024, and 8192 cores. These
tests were run after all of the other CTH tests
were run and they ran on the XT4 nodes of the
machine. All of the other runs, with the
exception of the 16384 core runs which ran on a
mixture of nodes, ran on the XT3 nodes of the
machine. These results seem to indicate that the
XT4 nodes were consistently faster than the XT3
nodes.

The PARTISN results show two different data
points for each run. This is for the two different
phases of the code. We tried to run the tests in
the same order, but had a processor failure on the

 Page 6 of 7

largest size (16384 cores) for N-way. Not
having time to rerun that test, we went ahead and
ran the remaining tests. As a result, the tests for
512 and 1024 cores were run on XT4 nodes for
the N-way test, while they had been run on XT3
nodes for the CVN tests. The tests for 4096
cores were also run on a different combination of
XT3 and XT4 nodes between the two tests.
Other than those tests, we have similar
performance between CVN and N-way, with the
differences being in the same range as those
from CTH. We were also not able to compare
the results for running on 11500 processors in
SN mode due to a processor failure while
running in N-way.

6.0 Future Work

This is clearly a “work in progress”. This N-way
code has never executed on a quad-core
processor. The major identified software change
remaining is in the QK to accommodate the
third memory page size of one gigabyte, which is
to be available in quad-core Opteron. Beyond
that one must verify (or restore) functionality in
quad-core Catamount. Finally we get to do the
potentially very interesting scaling studies
comparing single-core mode, dual-core mode
and quad-core mode.

Sandia is also continuing to research the design,
implementation and deployment of operating
systems for massively parallel scientific
computing platforms. A research project is
underway to investigate a framework for
building application-specific operating systems
[11]. This project is a collaboration between
Sandia, the University of New Mexico, and the
California Institute of Technology.

Acknowledgement

We are grateful to Fred Johnson in DOE Office
of Science to enable special funding for this
study. Part of the testing was conducted at the
Oak Ridge National Laboratory.

7.0 References

[1] T. G. Mattson, D. Scott, and S. R.

Wheat, "A TeraFLOP Supercomputer in
1996: The ASCI TFLOP System,"
presented at International Parallel

Processing Symposium, Honolulu, HI
1996.

[2] S. M. Kelly, R. B. Brightwell, and J. P.

Van Dyke, "Catamount Software
Architecture with Dual Core
Extensions," presented at Cray User
Group, Lugano, Switzerland, 2006.

[3] R. Brightwell, W. J. Camp, B. Cole, E.

DeBenedictis, R. Leland, J. Tomkins,
and A. B. Maccabe, "Architectural
Specification for Massively Parallel
Computers: An Experience and
Measurement-Based Approach,"
Concurrency and Computation:
Practice and Experience, vol. 17, pp.
1271-1316, 2005.

[4] R. Brightwell, K. D. Underwood, C.

Vaughan, “An Evaluation of the
Impacts of Network Bandwidth and
Dual-Core Processors on Scalability”,
2007 Cray Users' Group Conference,
May 2007.

[5] H. Wasserman, “Performance Analysis

of the Cray XT4”, Cray Technical
Workshop USA, February 2007,
http://nccs.gov/news/workshops/cray/pd
f/Wasserman.pdf

[6] P. Worley, “Cray XT3/XT4

Performance Analysis”, Cray Technical
Workshop USA, February 2007,
http://nccs.gov/news/workshops/cray/pd
f/Worley_CrayTech_2_26_07.pdf

[7] J. Kuehn, “HPCC on the Cray XT3 and

Cray XT4: Results & Analysis”, Cray
Technical Workshop USA, February
2007,
http://nccs.gov/news/workshops/cray/pd
f/xt3_xt4_comparison.pdf

[8] S. R. Alam, R. F. Barrett, J. A. Kuehn,

P. C. Roth, J. S. Vetter,
“Characterization of Scientific
Workloads on Systems with Multi-Core
Processors”, IEEE International
Symposium on Workload
Characterization (IISWC) San Jose,
October 2006.

[9] D. M. Pase, M. A. Eckl, “A

Comparison of Single-Core and Dual-

 Page 7 of 7

Core Opteron Processor Performance
for HPC”, http://www-
03.ibm.com/servers/eserver/opteron/pdf
/IBM_dualcore_whitepaper.pdf

[10] R. Brightwell, K. T. Pedretti, K. D.

Underwood, T. Hudson, “SeaStar
Interconnect: Balanced Bandwidth for
Scalable Performance”, IEEE Micro,
vol. 26, no. 3, pp 41-57, 2006.

[11] A. B. Maccabe, P. G. Bridges, R.

Brightwell, R. Riesen, and T. B.
Hudson, "Highly Configurable
Operating Systems for Ultrascale
Systems," presented at First
International Workshop on Operating
Systems, Programming Environments
and Management Tools for High-
Performance Computing on Clusters,
St. Malo, France, 2004.

