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ABSTRACT  
The XT3 Catamount Virtual Node (CVN) 
implementation was based on the dual processor 
support in ASCI Red’s [1] Cougar Light Weight 
Kernel Operating System. That solution was 
limited to no more than 2 virtual nodes per 
physical node. This paper describes the design 
for extending Catamount to support more CPUs 
per node. It identifies the areas needing 
modification and the selected resolution. Some 
preliminary performance results are provided. 
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1.0 Introduction 
 
We begin with a brief description of the 
Catamount Light Weight Kernel Operating 
System. A fuller description can be found in [2]. 
Emphasis is placed on areas needing 
modification for multiple CPU cores. Section 3 
describes the requirements for a multiple core 
solution and we provide the design and 
implementation in Section 4. While the 
development is still underway, some early dual-
core performance results are available and we 
present these in Section 5.  
 
2.0 Description of Catamount 
 
Catamount assumes a functionally partitioned 
MPP [3]. That is, Catamount runs on processors 
intended for intense computation and relies on 

                                                 
 * Sandia is a multiprogram laboratory operated 
by Sandia Corporation, a Lockheed Martin 
Company for the United States Department of 
Energy’s National Nuclear Security 
Administration under contract DE-AC04-
94AL85000. 

other processors within the MPP to perform 
additional services. These service processors run 
Linux and provide the interactive development 
environment, file I/O, and high speed access to 
external services. Figure 1 depicts the functional 
partitions. 
 
Figure 1: Functional Partitions of MPP using 
Catamount 
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Continue to refer to Figure 1 as we discuss the 
usage model for Catamount. A user logs into a 
Linux service processor and performs typical 
application execution set-up, such as compilation 
and creation of the problem dataset. The user 
then requests that the application be run on some 
number of compute nodes. The user also 
specifies how many process instances to run on 
each node, where the number of processes 
cannot exceed the number of cores. For the 
current CVN implementation, the maximum is 
two processes. The user-invoked “yod” program, 
executing on a service processor, launches the 
application on the assigned compute nodes. Once 
started, the application runs under Catamount’s 
control. The application instances on each 
compute processor pass messages to 
communicate with each other over the tightly 
coupled network. File I/O flows between the 
compute processors and the I/O processors. 
When the application completes, the user can 
review the results on the service processors 
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and/or direct that the files be sent to external 
services for post processing or archival storage. 
 
The Catamount operating system consists of a 
Quintessential Kernel (QK) and a Process 
Control Thread (PCT).  The PCT and the QK 
work together to provide the functionality 
required to run a scientific calculation. The PCT 
will decide what physical CPU core, and what 
physical memory a new process is to have. 
 
CVN allows the application to use twice as many 
nodes with no change to the application 
executable. Note, however that the number of 
processors is the only resource that has been 
doubled. The node memory is split between the 
two processes and the two processes share 
network access. It should not be thought of as an 
SMP since the two processes on a node do not 
share memory. 
 
At the behest of the PCT, the QK will set up the 
virtual addressing structures for the new process 
that are required by the hardware. The PCT will 
decide which processes are ready to run on their 
respective cores and at the behest of the PCT, the 
QK will flush caches, set up the hardware 
registers, and run the process(es). The basic 
structure of these components is shown below: 
 
Figure 2: Compute Processor Components 
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While Figure 2 provides a useful logical view of 
the components, the physical layout is quite 
different and is shown in Figure 3.  
 
Figure 3:  Catamount Physical Memory Layout 
(not to scale) 

QK 
text

Network
buffer

(qk heap)

Portals
memory

PCT
text

PCT
data

User
program
text &
data

User
heap

S
t
a
c
k

QK 
data

S
t
a
c
k

S
t
a
c
k

P 
e  P
r  C
s  T
i
s  h
t  e
e  a
n  p
t 

PCT heap

Up to 4
instances

 

When the QK installs the PCT, the remainder of 
physical memory is included in the PCT’s heap. 
When the PCT loads an application, it utilizes 
the bulk of its heap space for the application’s 
memory. It divides this space equally for each 
CVN process running on the node.  
 
While Catamount utilizes virtual addressing, 
there is no virtual memory support. This is an 
important performance, reliability and scalability 
feature of Catamount. Disks needed to 
implement virtual memory are very slow in 
comparison to memory access, have a low mean 
time to failure, and impede the predictable 
progress of the application. 
 
Another feature of Catamount’s memory 
management is default support for 2 MB pages. 
For many applications, larger pages can 
significantly reduce cache misses and TLB 
flushes as they cover a larger percentage of 
memory. Smaller, 4K pages are supported as 
well for applications that require more random 
access of memory. The user enables small pages 
with a command line option when starting the 
parallel application. 
 
The decision whether to run on the second core 
in virtual node mode is made at run time.  The 
default can be overridden with a yod command 
line option. With –SN, only one core is used. 
With –VN, both cores are used. If an application 
requires more than one half of the physical 
memory on a node to do its share of the 
computation, VN mode cannot be used. There is 
no virtual memory to extend the address space. 
Another memory-related consideration is 
contention. The processors each have their own 
cache, but the memory bus is shared. The 
frequency of cache misses will have an impact 
on how effectively the second processor can be 
utilized, as they compete for memory bandwidth.  
 
Similarly, the two processes on the same node 
must share the Network Interface Chip (NIC). A 
simple locking mechanism allows each process 
to safely send their messages independently. 
(This is an enhancement since the description 
given in [2].) In order to determine process 
destination, only one processor will receive all 
incoming messages. These contention issues can 
impact the effectiveness of CVN.  
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Figure 4: Dual Core CPU responsibility 
assignment 

 
Several papers have documented the 
effectiveness of dual cores, in particular on 
Catamount and Linux. They can be found in 
references [4] thru [9].  
 
Given this background on Catamount and its 
dual-core implementation, we turn now to the 
requirements for a multi-core version, called, N-
way Catamount.  
 
3.0 Requirements and Restrictions 
 
The immediate goal is to create an enhanced N-
way Catamount to support 4 processors per node, 
suitable to run on an XT4 populated with quad-
core AMD Opterons (Barcelona).  In so far as 
reasonable, the implementation should be N-way 
rather than 4-way and will be able to run on 
single core or dual core processors without 
recompilation. 
 
3.1 Regression-less Functionality and 
Performance 
 
As is typical of most enhancement efforts, 
regressions are not acceptable. Existing 
functionality shall be maintained.    Likewise, the 
existing performance characteristics of the 
applications shall be retained. Performance 
improvements, of course, are acceptable.   
 
MPI and shared memory (shmem) applications 
will be supported. Catamount will continue to 
interface to other system components, such as 
the Lustre File System, the Compute Processors 
Allocator, the batch scheduler, and the RAS 
system. 
 
There was one identified exception to the no-
regression requirement. The undocumented 
“share mode” feature in CVN will no longer be 

functional.  Share mode allowed a node to 
simultaneously run up to four independent user 
processes.  Share mode was available in versions 
of the light weight kernel prior to Catamount. It 
never proved useful, complicated the load 
protocol, and hindered independent progress of 
an application.  
 
Heterogeneous mode, like share mode is a rarely 
used feature. The “-F <filename>” option of the 
yod command allows up to 32 different binaries 
to be loaded onto independent subsets of nodes 
in a single job.  This functionality shall be 
preserved with N-way Catamount. As with the 
CVN implementation, the number of processes 
per node shall be the same for each subset of 
nodes.  The same binary shall run on each 
process on the node.  Only the last specified 
binary can request a virtual node count that is not 
a multiple of the number of processes per node. 
  
3.2 Networking 
 
Enhancements to the original CVN 
implementation allow each processor to access 
the NIC directly when sending messages. This 
feature shall be retained for N-way. It ensures the 
more independent progress of the process on 
each core. 
 
The CVN implementation only supports NIC-
sharing on messages being sent. All received 
messages are initially processed by the QK on 
the first CPU, who parses the message to 
determine the ultimate CPU destination. This 
limitation is due to host-side protocol processing. 
N-way Catamount will support NIC-side 
processing of the protocol.[10] This will allow 
messages to be sent to the target CPU/process 
immediately upon message receipt. 
 
3.3 Processes per node (ppn) 
 
The current yod options of SN or VN do not lend 
themselves to expansion to 4 (or more) virtual 
nodes per node. The current N-way plan is a 
relatively major API change. The yod command 
line specification of –SN and –VN will no longer 
be supported. The yod –sz (or –size or –np) 
option will now refer to the number of physical 
nodes to be allocated. With this change, the 
value in the –sz option will match the number 
specified on a qsub command. The number of 
virtual nodes per physical node will be specified 
with a new option, -ppn, which stands for 
processes per node. To allow an application to 
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run on a number of virtual nodes that is not a 
multiple of the processes per node, a –total-
virtual-nodes option is introduced. In UNIX-
style notation, the command line format will be: 
 
yod –sz/size/np=#nodes [[-ppn=procs_per_node] 
        -total-virtual-nodes=#vn] … 
 
Should the yod command not include a ppn 
specification, the file /etc/xt.conf will be 
consulted for the site default. If none, one will be 
used. 
 
3.4 Scalability 
 
The OS shall be scalable to at least 100,000 
nodes. There should be no limit on the number of 
virtual nodes except the 2**31 limit on the 
signed integer value.  
 
Memory usage by the OS itself shall be 
minimized and not scale with the size of the 
machine.  
 
3.5 Other Requirement Considerations 
 
The initial version of N-way Catamount will not 
support applications using OpenMP. Some 
consideration was given to re-introducing 
OpenMP-style support in Catamount. Prior light 
weight kernel versions of Catamount did support 
a simple threaded model. It was removed from 
Catamount since it was rarely used and had 
atrophied through the years. 
 
N-way Catamount will retain three design 
choices made in CVN.  After initial job start up, 
a process is permanently bound to a particular 
processor. The heap is divided equally among 
virtual nodes. There is no shared memory 
between application processes on a node.  (The 
shmem library is supported for sharing memory 
access between any virtual nodes in a job.) 
 
 
4.0 Design of Required Changes 
 
While these changes are currently being made in 
the code, presently the only testing is single and 
dual core to verify no regressions. 
 
4.1 Limit Memory Requirements 
 
The requirement for OS memory to not grow 
with the number of nodes, is not met by CVN.   

The PCT has a number of static arrays that are 
dimensioned by the maximum number of virtual 
nodes.  These are used during the job load 
process and can be eliminated by borrowing 
space that the application will ultimately use.  
The PCT’s use of malloc after initialization is 
very restricted since the PCT’s heap is used for 
application memory. Hence, fragmenting the 
PCT’s heap would impact the maximum memory 
available for the application.  The current N-way 
implementation uses a shared read-only memory 
region for the application that contains the 
application’s node map and a single executable 
text section.   This space is allocated early in job 
load and the text portion is used for the various 
temporary tables the PCT requires to load the 
job. 
 
4.2 Change “2” to “N” 
 
Conceptually the changes to go from two-way to 
N-way are quite simple.  In CVN there are many 
places were there are separate paths for handling 
the two processes or processors.   The processing 
for other than cpu-0 needs to become a loop over 
processors.  In some cases, it can be combined to 
a loop over all processors.   There were a few 
places where a loop over “N” was not possible. 
The logic for each individual node is unique. C 
preprocessor commands flag these places when 
“N” is changed to a value greater than 4.  
 
Certain OS structures need expansion to support 
the increased number of processors. For 
example, the “other processor” field in the 
Process Control Block, will be dimensioned and 
references will be converted to loops, as 
appropriate.   
 
4.3 PCT – QK Interface 
 
There are generalizations to the interface 
between the PCT and the QK for virtual node 
initiation and subsequent job scheduling.  Rather 
than looping over calls into the QK, it is more 
efficient to modify the QK’s API to specify the 
number of times a request shall be executed.  
 
4.4 Process Migration 
 
In CVN, the two processes on a node both start 
on cpu-0 and the second is “migrated” to cpu-1 
by an application system call from the start up 
library and then the application notifies the PCT.  
The N-way migration process is made more 
robust by making the only application system 
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calls for this go through the PCT and allow the 
PCT to make a single call into the QK to migrate 
the list of processes.    
 
4.5  QK Multi-CPU Code 
 
There are several places in the CVN QK where 
there are separate entries or paths for the cpus.  
These need to be replicated or generalized.  The 
current N-way implementation does some of 
each.  Where there is hard-coded replication, it 
is, at present, 4-way. The behind the scenes 
handling to provide the software with cpu-id 
information needed slight generalization.   
 
4.6  Portal Process Identifier 
 
The file system software cared about not reusing 
Portals identifiers too rapidly so a rolling bias 
was added to the compute nodes Portals PID. 
 
4.7 Portals Networking Software 
 
During the development of the Red Storm 
system, two versions of the Portals protocol were 
conceived. One version would run on the host, 
while the second version would run on the NIC. 
(These are sometimes referred to a “generic” and 
“accelerated” Portals.) The second version has 
never been fully developed and integrated into 
CVN. It will be introduced, tested, and integrated 
into N-way. Using the NIC to process the 
protocol becomes more important as the number 
of cores being supported by one NIC grows.  
 
5.0 Performance Metrics 
 
In order to validate the design requirements of no 
regressions going from CVN to N-way in either 
performance or functionality, we have tested on 
a variety of systems.  The largest test to date was 
run on the mixed XT3/XT4 system at NCCS at 
Oak Ridge.  For that test, we ran two application 
codes at sizes up to the full machine.  The codes 
were CTH, a shock hydrodynamics code, and 
PARTISN, a neutron transport code.  The 
performance results from these codes run in VN 
mode on problems which were scaled with the 
number of processors are shown in figures 5 and 
6.  For both of these figures, better performance 
is indicated by lower values. 
 
Figure 5:  CTH VN performance 
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Figure 6:  PARTISN VN performance 
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During this test, we first ran the tests with the 
machine running the CVN system and then ran 
the same tests in the same order with the N-way 
system.  In the case of CTH, each of the tests 
gave the same answers on both operating 
systems.  The difference in performance was 
between 0.06% faster for N-way and 0.21% 
faster for CVN, with most tests indicating less 
than 0.05% difference.  This amount of 
difference is consistent with run to run variation.  
We also ran CTH in SN mode on 11500 nodes of 
the machine and saw that CVN was 1.2% faster 
than N-way.  This is more than would have been 
expected.  The other thing that can be noted 
about the CTH results is the dips in the scaling 
results for 32, 512, 1024, and 8192 cores.  These 
tests were run after all of the other CTH tests 
were run and they ran on the XT4 nodes of the 
machine.  All of the other runs, with the 
exception of the 16384 core runs which ran on a 
mixture of nodes, ran on the XT3 nodes of the 
machine.  These results seem to indicate that the 
XT4 nodes were consistently faster than the XT3 
nodes. 
 
The PARTISN results show two different data 
points for each run.  This is for the two different 
phases of the code.  We tried to run the tests in 
the same order, but had a processor failure on the 
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largest size (16384 cores) for N-way.  Not 
having time to rerun that test, we went ahead and 
ran the remaining tests.  As a result, the tests for 
512 and 1024 cores were run on XT4 nodes for 
the N-way test, while they had been run on XT3 
nodes for the CVN tests.  The tests for 4096 
cores were also run on a different combination of 
XT3 and XT4 nodes between the two tests.  
Other than those tests, we have similar 
performance between CVN and N-way, with the 
differences being in the same range as those 
from CTH.  We were also not able to compare 
the results for running on 11500 processors in 
SN mode due to a processor failure while 
running in N-way. 
 
6.0 Future Work 
 
This is clearly a “work in progress”. This N-way 
code has never executed on a quad-core 
processor.  The major identified software change 
remaining  is in the QK to accommodate the 
third memory page size of one gigabyte, which is 
to be available in quad-core Opteron.  Beyond 
that one must verify (or restore) functionality in 
quad-core Catamount.  Finally we get to do the 
potentially very interesting scaling studies 
comparing single-core mode, dual-core mode 
and quad-core mode. 
 
Sandia is also continuing to research the design, 
implementation and deployment of operating 
systems for massively parallel scientific 
computing platforms. A research project is 
underway to investigate a framework for 
building application-specific operating systems 
[11].  This project is a collaboration between 
Sandia, the University of New Mexico, and the 
California Institute of Technology. 
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